ENGLISH

INTRODUCTION

The TransLT library offers the following functionalities:

Supported coordinate operations:

Coordinate transformation can be done based on a transformation model that is taken from a file, a model that contains operations with coordinates defined as transformation steps. If the transformation model supports the inverse calculation then the transformation can be done in reverse.

To create files with transformation models, we recommend that you use the main TransLT application where you can create and test transformation models. Also in the main application you can use the EPSG database to automatically create transformation steps. For this it is necessary to have a minimum of knowledge about coordinate reference systems (CRS) and about possible coordinate operations (CooOp) between these systems. Another important factor is the accuracy of the transformation that you need to know before making a new transformation model. It would be useful to have one or more points with coordinates in both systems to test the newly created model. If you can't handle it, please write to us at support@3dspace.ro, and if possible we will create the transformation model for you.

In the "Examples" folder you will find information about the implementation in Delphi and in Visual Studio, including the compiled executables. Also here you will find examples with some of the supported file types (transformation models, files with coordinates, files with graphic entities, etc.).

In the "Demo_TransLT_Library.exe" test application window you have exemplified how to make the settings in the "Language settings" and "Model properties" section and four usage examples in the sections: "Transformation test file", "Test for one point", "Test for entities file" and "Define entities, transform points and draw to Google Earth".

Note on the choice of operating system 32bit or 64bit: For 32-bit operating systems TransLT.Win32.dll library operate with 80 bits (10 bytes) allocated to real numbers, about 19 to 20 significant digits and for 64-bit operating systems TransLT.Win64.dll library operate with 64 bits (8 bytes) allocated to real numbers, about 15 to 16 significant digits.

 

Supported Conversions and Transformations

Coordinates conversions

Type of source coordinates   Type of target coordinates EPSG
method code

Geographical coordinates (φ,λ,h)

Geocentric cartesian coordinates (X,Y,Z)

9602

Geocentric cartesian coordinates (X,Y,Z)

Geographical coordinates (φ,λ,h)

9602

Geographical coordinates (φ,λ)

Plane coordinates (N,E) according to selected projection

-

Plane coordinates (N,E)

Geographical coordinates (φ,λ) according to selected projection

-

Projections

No. Projection name Applicable on
ellipsoid
Applicable on
spheroid
Reversible EPSG
method code
Cylindrical Projections

1

Cassini-Soldner

9806

2

Central Cylindrical

-

3

Cylindrical Equal Area (Normal)

9834, 9835

4

Cylindrical Equal Area (Oblique)

-

5

Cylindrical Equal Area (Transverse)

-

6

Equidistant Cylindrical

1028, 1029

7

Gall Stereographic Cylindrical

-

8

Hotine Oblique Mercator (Variant A)

9812

9

Hotine Oblique Mercator (Variant B)

9814, 9815

10

Hyperbolic Cassini-Soldner

9833

11

Laborde for Madagascar

9813

12

Mercator (1SP) (Variant A)

1026, 9804

13

Mercator (2SP) (Variant B)

9805

14

Mercator (2SP) (Variant C)

1044

15

Miller Cylindrical

-

16

Popular Visualisation Pseudo Mercator

1024

17

Swiss Oblique Mercator

-

18

Transverse Mercator

1111, 9807

19

Transverse Mercator (South Orientated)

9808

20

Transverse Mercator Zoned Grid System

9824

21

Tunisia Mining Grid

9816

22

Universal Transverse Mercator (UTM)

-

Pseudocylindrical Projections

23

Collignon

-

24

Eckert I

-

25

Eckert II

-

26

Eckert III

-

27

Eckert IV

-

28

Eckert V

-

29

Eckert VI

-

30

Equal Earth

1078

31

Fahey (Modified Gall)

-

32

Foucaut Sinusoidal

-

33

Foucaut Stereographic Equivalent

-

34

Hatano Asymmetrical Equal Area

-

35

Kavraiskiy V

-

36

Kavraiskiy VII

-

37

Loximuthal

-

38

McBride-Thomas Flat-Polar Parabolic (No. 5)

-

39

McBryde-Thomas Flat-Polar Quartic (No. 4)

-

40

McBryde-Thomas Flat-Polar Sine (No. 1)

-

41

McBryde-Thomas Flat-Polar Sinusoidal (No. 3)

-

42

McBryde-Thomas Flat-Pole Sine (No. 2)

-

43

Mollweide

-

44

Nell

-

45

Nell-Hammer

-

46

Pseudo Plate Carrée

9825

47

Putnins P1

-

48

Putnins P2

-

49

Putnins P3

-

50

Putnins P3p

-

51

Putnins P4 (Craster Parabolic)

-

52

Putnins P4p

-

53

Putnins P5

-

54

Putnins P5p

-

55

Putnins P6

-

56

Putnins P6p

-

57

Quartic Authalic

-

58

Sinusoidal (Sanson-Flamsteed)

-

59

Wagner I (Kavraiskiy VI)

-

60

Wagner II

-

61

Wagner III

-

62

Wagner IV

-

63

Wagner V

-

64

Wagner VI

-

65

Werenskiold I

-

66

Winkel I

-

67

Winkel II

-

Conic Projections

68

Albers Equal Area

9822

69

Bipolar conic of western hemisphere

-

70

Equidistant Conic

1119

71

Euler (Equidistant Conic)

-

72

Krovak Oblique Conformal Conic

9819

73

Krovak Oblique Conformal Conic (North Orientated)

1041

74

Krovak Oblique Conformal Conic Modified

1042

75

Krovak Oblique Conformal Conic Modified (North Orientated)

1043

76

Lambert Conformal Conic (1SP variant B)

1102

77

Lambert Conformal Conic (1SP)

9801

78

Lambert Conformal Conic (1SP) West Orientated

9826

79

Lambert Conformal Conic (2SP)

9802

80

Lambert Conformal Conic (2SP) Belgium

9803

81

Lambert Conformal Conic (2SP) Michigan

1051

82

Lambert Conic Near-Conformal

9817

83

Murdoch I (Equidistant Conic)

-

84

Murdoch II

-

85

Murdoch III (Equidistant Conic, minimum error)

-

86

Perspective Conic

-

87

Tissot

-

88

Vitkovskiy I (Equidistant Conic)

-

Pseudoconic Projections

89

Bonne (South Orientated)

9828

90

Bonne (Werner for lat.1sp = 90°)

9827

Polyconic Projections

91

American Polyconic

9818

92

International Map of the World (Modified Polyconic)

-

Azimuthal Projections

93

Azimuthal Equidistant (Charles F. F. Karney formulas)

1125

94

Azimuthal Equidistant (J.P. Snyder formulas)

-

95

Colombia Urban Projection

1052

96

Gnomonic

-

97

Guam (Azimuthal Equidistant)

9831

98

Lambert Azimuthal Equal Area

1027, 9820

99

Lee Oblated Stereographic

-

100

Local Orthographic

1130

101

Miller Oblated Stereographic

-

102

Mod. Stererographics of 48 U.S.

-

103

Mod. Stererographics of 50 U.S.

-

104

Mod. Stererographics of Alaska

-

105

Modified Azimuthal Equidistant (for Micronesia)

9832

106

Oblique Stereographic

9809

107

Orthographic

9840

108

Polar Stereographic Variant A (Universal)

9810

109

Polar Stereographic Variant B

9829

110

Polar Stereographic Variant C

9830

111

Stereographic (J.P. Snyder formulas)

-

112

Topocentric local

9836, 9837

113

Vertical Perspective

9838

114

Vertical Perspective (Orthographic case)

9839

Miscellaneous Projections

115

New Zealand Map Grid

9811

116

Van der Grinten

-

Transformations with parameters

Transformation type Method No.
parameters
Invertible
parameters
Reversible EPSG
method code

Transformation 1D

3D plane rotation

5

-

Translate to elevation

1

-

Transformation 2D

2D Helmert conformal transformation

4

9621, 9656

2D Helmert conformal transformation with rotation origin

6

-

2D orthogonal affine transformation

5

-

2D non-orthogonal affine transformation

6

1049, 9623, 9624, 9666

Transformation 3D

3D Helmert, Bursa-Wolf method, conformal transformation

7

1031, 1032, 1033, 1035, 1037, 1038, 1132, 1133, 1140

3D Helmert, Molodenski-Bedekas, conformal transformation

10

1034, 1039, 1061, 1062, 1063, 1065, 1066, 9603, 9604, 9605, 9606, 9607, 9636

3D Helmert conformal transformation

7

-

3D affine transformation

8

-

3D affine transformation

9

-

3D affine transformation with rotation origin

12

-

Time-dependent 3D transformation, Bursa-Wolf method

15

1053, 1054, 1055, 1057, 1058, 1064

Time-dependent 3D transformation, Helmert conformal

15

-

Polynomials transformations

Method name Polynomials degree Reversible EPSG
method code

General polynomial

2

9645

3

9646

4

9647

6

9648

13

-

Reversible polynomial

2

9649

3

9650

4

9651

6

-

13

9654

Complex polynomial

3

9652

4

9653

Madrid to ED50 polynomial

9617

Grid files

File
extension
Format File description Applied to EPSG
method code

.94

Binary

Geoid model VERTCON format

h

9658

.asc

ASCII

Geoid model ASC format

h

1085

.b

Binary

NADCON 5, GEOCON, GEOCON 11 or VERTCON 3.0 format

(φ,λ,h), (φ,λ) or h

1074, 1075

.bin

Binary

Geoid model NGS format

h

1047, 1093, 1109, 1110, 1134, 1135

.byn

Binary

Geoid model GSD format

h

1060, 1090, 1126

.csv

ASCII

Geoid model NZLVD (New Zealand) or BEV AT (Austria) format

h

1071, 1080, 1081, 1089

.dat

Binary

NTv1 format

(φ, λ)

9614

.dat

ASCII

Geoid model DAT format

h

1059, 1082, 1098, 9661

.ggf

Binary

Geoid model Trimble GGF format

h

-

.grd

Binary

ANCPI 1D or 2D format (Romania)

(N, E) or h

-

.grd

ASCII

EGM96 geoid model, NGA format

h

1103, 1105, 1106, 9661

.gri

ASCII

Geoid model Gravsoft (OSGM15) format

h

1047, 1072, 1093, 1096

.gsb

Binary

NTv2 format, files with multiple grids that cover more areas, the gridscan have sub-grids attached

(φ, λ) or h

1048, 1083, 9614, 9615

.gsf

ASCII

Geoid model Carlson SurvCE GSF format

h

-

.gtx

Binary

Geoid model GTX format

h

1084, 1088, 1121, 1122, 9665

.gvb

Binary

Point motion NTv2_Vel format, files with multiple grids that cover more areas, the gridscan have sub-grids attached

(φ, λ, h)

1070, 1113, 1114, 1141

.gz

Archive

EGM2008 geoid model, NGA format

h

1025, 1092

.json

ASCII

Triangulated model, TIN format

(N,E) or H

1137, 1138

.las / .los

Binary

NADCON format

(φ, λ)

9613

.lla

ASCII

Latitude and longitude corrections in PROJ4 format

(φ, λ)

-

.mnt

ASCII

IGN with MNT format

(φ, λ) or h

1073, 1087, 1095

.sid

ASCII

Geoid model NZGV format

h

1030

.txt

ASCII

IGN with TXT format

(φ, λ) or h

1087, 1094, 9664

.txt

ASCII

OSTN02/OSGM02 or OSTN15/OSGM15 1D or 3D format

(N,E,H), (N,E) or H

1045, 1097, 9633, 9663

.txt

ASCII

Geoid model CING11 format

h

1050, 1082, 1091, 1098

gugik*.txt

ASCII

GUGiK PL TXT format

(φ, λ, h) or h

1099, 1100, 1101

.isg.txt

ASCII

Geoid model ISG format

h

1117, 1118

.zip

Archive

Deformation model NZGD2000 format

(φ,λ,h), (φ,λ) or h

1079

Grid interpolation methods: Bilinear, Bicubic spline and Biquadratic.

Offset methods

Method name Applied to Reversible EPSG
method code

Longitude rotation

λ

9601

Vertical Offset

h

1131, 1136, 9616

Vertical Offset and Slope

h

1046

Geographic 2D offsets

(φ, λ)

9619

Geographic 2D with Height Offsets

(φ, λ, h)

9618

Geographic 3D offsets

(φ, λ, h)

9660

Geographic 3D to 2D conversion

h = 0.0

9659

Geographic 2D axis order reversal

(φ, λ)

9843

Geographic 3D axis order change

(φ, λ)

9844

Change of vertical axis direction

h

-

Change of horizontal axes directions

(φ, λ), (N, E)

-

Change of all axes directions

(N, E, H), (X, Y, Z)

-

Change of vertical axis unit

h

1069, 1104

Change of horizontal axes units

(φ, λ), (N, E)

-

Change of all axes units

(N, E, H), (X, Y, Z)

-

Points motion (ellipsoidal)

(φ, λ, h)

1067

Change zero-tide height to mean-tide height

h

1107

Predefined constants and functions for transformations with own formulas

Name Description Example

pi

Pythagorean number pi = 3.141592655...

e

Euler number e = 2.71828182...

abs

absolute value

abs(-1.0) = 1.0

abs(1.0) = 1.0

sqrt

square root

sqrt(2.0) = 1.41421356...

pow(B,n)

raises base B to power n

pow(25,1.5) = 125.0

ln

natural logarithm

ln(e) = 1.0

sin

sine calculated for angles in radians

sin(pi/2) = 1.0

cos

cosine calculated for angles in radians

cos(pi/2) = 0.0

tan

tangent calculated for angles in radians

tan(pi/4) = 1.0

asin

arcsine, the return value will fall in the range [-pi/2, pi/2]

asin(1.0) = pi/2

acos

arccosine, the return value will fall in the range [0, pi/2]

acos(0.0) = pi/2

atan

arctangent, the return value will fall in the range [-pi/2, pi/2]

atan(1.0) = pi/4

atan2(dy,dx)

arctangent angle and quadrant, the return value will fall in the range [-pi, pi](all quadrants)

atan2(-5.0,0.0) = -pi/2

sinh

hyperbolic sine

sinh(ln(2.0)) = 0.75

cosh

hyperbolic cosine

cosh(ln(2.0)) = 1.25

tanh

hyperbolic tangent

tanh(ln(2.0)) = 0.6

asinh

hyperbolic arcsine

asinh(0.75) = ln(2.0)

acosh

hyperbolic arccosine

acosh(1.25) = ln(2.0)

atanh

hyperbolic arctangent

atanh(0.6) = ln(2.0)

rtod

conversion from radians to decimal degrees

rtod(pi) = 180.0

dtor

conversion from decimal degrees to radians

dtor(180.0) = pi